Exercise 11

Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.

$$
f(x)=\left(x+2 x^{3}\right)^{4}, \quad a=-1
$$

Solution

By definition, a function is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Evaluate the function at $x=-1$.

$$
f(-1)=\left[(-1)+2(-1)^{3}\right]^{4}=(-1-2)^{4}=81
$$

Calculate the limit as x approaches -1 using the limit laws.

$$
\begin{aligned}
\lim _{x \rightarrow-1} f(x) & =\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)^{4} \\
& =\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\left(x+2 x^{3}\right)\left(x+2 x^{3}\right)\left(x+2 x^{3}\right) \\
& =\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right]\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right]\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right]\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right] \\
& =\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right]^{4} \\
& =\left[\lim _{x \rightarrow-1}(x)+\lim _{x \rightarrow-1}\left(2 x^{3}\right)\right]^{4} \\
& =\left[\lim _{x \rightarrow-1}(x)+2 \lim _{x \rightarrow-1}\left(x^{3}\right)\right]^{4} \\
& =\left[\lim _{x \rightarrow-1}(x)+2\left(\lim _{x \rightarrow-1} x\right)\left(\lim _{x \rightarrow-1} x\right)\left(\lim _{x \rightarrow-1} x\right)\right]^{4} \\
& =\left[\lim _{x \rightarrow-1}(x)+2\left(\lim _{x \rightarrow-1} x\right)^{3}\right]^{4} \\
& =\left[(-1)+2(-1)^{3}\right]^{4} \\
& =(-1-2)^{4} \\
& =81
\end{aligned}
$$

The condition in the definition is satisfied, so $f(x)=\left(x+2 x^{3}\right)^{4}$ is a continuous function at $a=-1$.

